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RESULTS of our continuing study affords further clarification 
of the basic interactions treated in the above publi~tion. A 
significant finding is that the relations obtained from con- 
sidering a dispersed multiphase system can be now derived 
from volume averaged dynamic equations, thus extending the 
ranges of consideration from multiphase to multidomain 
mixtures. The basic concepts of averaging have been extended 
from Birkhoff [2], Delhaye [3], and Slattery [4], via introduc- 
ing conservation relations of the mixture. For conciseness, we 
shall only illustrate with the continuity and the momentum 
equations, leaving the general treatment for a future 
presentation. 

PHASIC EQUATIONS 

The phasic equations of continuum mechanics as applied 
to a pure phase are well known. In a pure phase k, the 
equations on continuity and momentum are: 

(1) 

where r is the time, p& is the density of pure phase S U, is its 
velocity, P, is the static pressure inside phase k, f, is the field 
force per unit mass, and C* is the shear stress. 

PHASE VOLUME AVERAGING 

Within the framework of multiphase mechanics, bubbles 
(for instance) of different size ranges may constitute different 
phases [S]. Computationwise, we readily approximate a 
gradual change of sizes of particles by a gradual change in 
population of particles of discrete steps of particle mass. 

Consider a region R of volume u of a mixture of phases 
enclosed by surface A, with R, occupied by phase k over 
voiume vlr, with A,, denoting the intersection of A with A, for 
phase k, and n, is the outwardly directed unit normal to the 
phase interface A, - A,, = AA, from phase k. The volumetric 
averages of any scalar, vector, or tensor f associated with 
phase k are given by: 

.6=;jR hdv 
k 

(3) 

and 

(A)=$ 
f 
R fxdv. (4) 
k 

The volume averages of derivatives of this quantity are given 
from the generalized transport theorem as [4] : 
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where U;n, is the speed of displacement of the phase 
interface. For fk = 1 in equation (3), equation (7) gives: 

aa, 1 
-.- = - 
at s U;n,dA 

v AA, 

and equation (5) gives : 

Va, = - L 
I 

nk dA. 
v AA* 

(9) 

continuity equation 
When these averaging relations are applied to specific 

quantities, we have the following relations: 

(Pd =; s p,. dv = & 
RI 

The latter for uniform density of material constituting phase 
k. Further, the densities in equations (1) and (2) are related to 
uk where the density of phase k is the material density, or 
plr = PI. When applied to the mixture over volume u, the 
average density becomes the density of the phase averaged 
over that volume, or pL = &. This is a point that has to be 
understood in carrying out the averaging. Pr is the density of a 
dispersed particle cloud although the average density of a 
phase in a system of stratified flow of two immiscible layers is 
less meaningful than in a dispersed system. 

The momentum of phase k in a given votume in space is : 

N 1 
PXUk = - 

s 
p&I, dv. (10) 

’ R, 
The averaging of the derivatives over volume v is carried out 
similarly, or when a&/& in vt is averaged over O: 
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where the first Pt from equation (1) is the material density in C~ 
and is now averaged over t‘, Fk is the density of the particle 
cloud, and the fourth px is the density of material constituting 
k inside k. Similarly, from equation (I): 

1 

” i 
V pklJ, dc = v I~xuk 

. R, 

where the lirst and the fourth p,Ua are from equation (1) for 
material inside volume uk, the third pkU, is now averaged over 
volume I:. Therefore, from volume averaging of equation (1 ), 
we get: 

a& 
n 

-_ 
iv 

+ v &, + ! p&J,-U,)~n,dA =O (13) ,, j~A 
k 

or in terms of average density of phase k in volume I’ and the 
mean velocity U, : 

(7jst 
~~-+v~(&)=r,+v4, (14) 

where Fk is the rate of generation of k per unit volume L’ via 
conversion from the adjoining phase, and 

6, = &U, - pz, (15) 

which is zero for & = constant = pr (or for a single phase 
incompressible fluid, or for a two-phase mixture of incom- 
pressible fluids and constant at). 6, remains to be determined. 
We note that Ft = 0 when the integral in equation (13) is zero. 
This interpretation differs from that in [3,4,6] and is based on 
the consideration of the general case of an interface of non- 
zero thickness [6]. 

Momentum equation 

The average of pressure gradient in phase k is given by : 

P,n, dA (16) 

where P, is the pressure at a point inside phase k, and 

P, dL. = a,(P,) (17) 

while 

(18) 

where (Pt) is the average pressure in the volume L’~. The 
integral in equation (16) is a pressure force due to interfacial 
pressure which works against VP,. 

The meaning of the volume average of the shear stress is : 

v7;k=v.i,+! 
.r 

rk . nt dA (19) 
“ AA, 

where ir, is the shear stress of phase k in the mixture and the 
integral gives the force exerted by k on the boundary or drag 
force per unit volume. 

Averaging equation (2) for phase k over volume u gives: 
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Substituting the mean quantities &, U, and taking f, as a _ 
constant, we obtain: 
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In terms of physical phenomena, we note that 

ptUJU, - U,) n, dA = I,, + f,U’ (22) 

is related to the transfer of momentum at the interface which 
is dependent on the configuration and dynamics of the system 
and the generation of k. I,, and U’ remain to be determined. 
because Ft, when generated, will not be at U, of that phase. 
The force 1,. may arise even in an inviscid system when one 
phase is accelerated relative to the other phase. This differs 
again from [3,4,6] from consideration of the general case of 
transfer of inertia force across the interface without phase 
change. The configuration of the interface may range from a 
dispersed system to a pure stratified flow system in which case 
no momentum is transferred through the interfaceexcept that 
due to friction and I,, = 0. The term 

Pkn, dA = P,.Vx, (23) 

as suggested by Va, given by equation (9), IS the pressure force 
at the interface due to interfacial mean pressure [6] which 
may work against that due to Brownian diffusion, for 
example. The integral 

is the force due to shear stress at the interface where b,, 13 
defined as the inverse relaxation time for momentum transfer 
to the interface and V& is the force due to change in the flow 
field. The last two terms in equation (21) consist of ci, in 
equation (15) and 

At = /jp8,8, - oaU,Ux (‘5) 

which also remains to be determined. 
We further note that the physical meaning of ii, = a$ IS 

seen in that 

Va,(P,) = a,V(P,j + (Pk)Va, 

where the first term on the right hand side a,V( Pr) is the force 
acting on a phase due to pressure gradient and (P,)Val, is the 
force acting on a phase due to diffusion. The latter is expected 
to be reduced by P,,Va, in equation (23). 5, in the above 
represents the shear stress ofcomponent k in the mixture and 
is equal to rli in equation (2) for a pure phase only in the 
limiting case of stratified flow. When k is a dispersed phase (or 
a continuum phase containing a dispersed phase), i,, repre- 
sents in the general sense, transfer of momentum by particles 
via bodily motion due to diffusion. For the general repre- 
sentation, we define: 

or shear stress of a phase k in the mixture [5] 
Equation (21) now becomes : 
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=- Va,(P,) + PkaVak + 5, + &fk 

+ v,, + v;, + I,, + r,u 

+$,+V.A, (27) 

Note that many terms remain to be determined : 
1. Some parameters need to be revised such that in the 

multiphase computations, interface variables U,, etc. be 
replaced by proper interacting parameters replacing F,,, etc. 
This reduces the number of dependent variables in the 
computation by eliminating variables at the interface except 
when treating discrete domains. 

2. The effects of momentum transfer due to inertia of 
phases and the interface pressure across an interface: I,,, and 
((Pk) - P,,)Vak remain to be determined (they are zero for 
pure stratified flow) in the next section. 

3. The effects ofgeneration Tt and the associated velocities 
U’ need to be identified. 

4. All the deviations between products of the averages to 
the averages of the products remain to be determined. 

VOLUME AVERAGING AS APPLIED TO 

A MIXTURE 

In order to determine the terms identified in the categories 
of items (l), (2), and (3) at the end of the previous section, we 
explore the conservation principles in relation to an overall 
multiphase mixture. This step was not taken in [3,4,6] but is 
deemed to be a necessary step for a complete account of the 
multiphase system as a whole. 

Excluding any solid structures in the system for the present, 
and summing over the phases, we have, according to 
equations (3) and (4): 

(Pm> = c Pk 
k 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(The last equalities are according to the definitions of the 
shear stress of component k in the mixture.) Expressions in 
equation (30) include a concern for objectivity [‘I]. 

The continuity equation (13) is readily summed over all the 
phases : 

since from conservation at the interface: 

F L. p&J, - U,) II, dA = 0 (35) 

when reduced to individual averages, we get : 

The terms of the momentum equation, equation (20), are 
also readily summed, in particular: 

p=’ s Pdl:=(P)=f; 
s 

PI dv 
v R R, 

= c Fk = c %<P&> (37) 

or (P,) = P, although a difference may arise due to surface 
tension and large acceleration. Note that P is the pressure at a 
point in the mixture, and 

c[V(a,(P,)) - P,,Aa,] = V(P) = Vg (38) 

suggesting that [6,8] 

P,,Vu, = paVa, = B,PVa, (39) 

where p, is the mean interface pressure and B, is a displace- 
ment factor which is a function of configuration of phase k 
and dynamic variables of the system [S] 

Summing over all the phases k, we get 

;(Px) +; 4 s dJkWJk - UJ. nk dA 
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for constant f,,,=f,. We note that 1 T,CJ’=O, and U=U,. 

The jump condition momentum’balance at the interface 
gives : 

-:;JA, [- M&Jr- Us)- P,I+r,] ‘II, dA 
L 

Therefore, we can rewrite : 

= c It, = 1 I,. (41) 
!l Ir 

$wJ + v. (~m,BmB,) + c I, + VP - v ‘Tm 

(42) 

(43) 

(44) 

We note that I,, or I, = 0 for pure stratified flow where there 
is no transfer of inertia across the interface. For highly 
dispersed multiphase mixture [9], the nature of conservation 
based on the mixture is prominent, in which case: 

I, = v ;,(cJ~ - i&)(U~ - U,). (46) 

In general, we may designate: 

I, = c,v p,(Q - U,,(tJ~ - ci,) (W 
where Ct is a dispersion factor which is a function of the 
configuration of phase k and dynamic variables of the system, 
(highly dispersed and locally isotropic, C, = 1; or purely 
stratified and anisotropic, C, = 0). 

In between, situations such as distributed bubble cham, 
slug flow, wavy stratified flow, or annular flow, 1 2 C, 2 0. 
The displacement factor, B,, in equation (39), however, has 
the range of0 I Bk I 1, with the limits of Bk = 0 for dispersed 
multiphase flow where diffusion is prominent and B, = 1 for 
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pure stratified flow (multidomain). A discussion of the 
influence of the whole range of flow configurations is given in 
a separate paper by Chao, Sha, and Soo [lo]. While C, and E, 
cannot be determined rigorously at this stage except for the 
limiting cases, they suggest that the dynamic equations of a 
multiphase system have to account for the configuration of 
phases rather than being a simple carry over from the single 
phase flow system. 

Corresponding relations for the energy equation are 
readily derived. The force due to virtual mass 1; and its rate of 
doing work L; are readily included in as cumulative with I, 
and L, [I]. 

It might be said that even though the terms including the 6s 
and the As still remain to be resolved, the present averaging 
effort has helped to extend the earlier formulation from 
multiphase to distributed multidomain (including distributed 
stratified flow). The multiphase formulation remains the same 
as before [l] when differences between the products of 
averages and averages of products and their derivatives are 
assumed to be zero. 

If the formulations based on averaging are to be applied to 
the calculations of real systems, As, 6s, and their derivatives 
must be determined. Tacit assumption ofzero values for these 
quantities is tantamount to taking individual averaged 
parameters in the beginning. 

In the general sense, the case of Ck = 0 and i?, = I, or the 
drift flux model, is an idealization or limiting case. It is an 
adequate approximation in some cases when the effect of the 
passage of pressure and inertia waves across the interface 
does not have an important effect. However, when this 
abstraction is applied to an analysis of wave interaction such 
as in a one-dimensional transient flow analysis, it yields 
imaginary characteristics while the same analysis as applied 
to each phase gives real characteristics. The imaginary result 
indicates that, when transfer of waves across the interface is 
excluded, a common set ofcharacteristics for the mixture does 
not exist. For the general case of 1 > C, > 0 and 0 < B, < I, 
the characteristics are real in a multiphase-multidomain 
system [ 111. 
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